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We consider a one-dimensional gas of two kinds of particles with different
masses interacting through short range interactions. The system exhibits an
extreme form of the Soret effect: when the ends of the system are in contact with
thermal baths of different temperatures, there is complete separation of the
species. We show how this separation can be well described in the Boltzmann
approximation and discuss the origin of this odd behavior.
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1. INTRODUCTION

When a binary fluid is subjected to a temperature gradient, the densities r+
and r− of the species become space-dependent in such a way that the rela-
tive concentration r+(x)/r−(x) changes along the direction of heat flow.
This is the Ludwig–Soret, or Soret effect. (1) That this effect happens does
not in itself need an explanation: once the temperature difference takes the
system away from equilibrium and breaks translational symmetry, there is
no reason why the ratio of concentrations should stay constant.

However, the Soret effect has practical applications in the separation
of species, (2) and this requires a quantitative prediction of its magnitude
in each case. There have been several analytic approaches to do this for
gases, (3) condensed phases, (4) grains in suspension, (5) porous media, (6) etc.
(For a review, see ref. 7).

From a purely theoretical point of view the Soret effect is interesting
because it cannot in general be discussed in terms of local equilibrium, in



which a space-dependent local temperature fully accounts for the concen-
tration ratio—as for example the local pressure accounts for the variation
of the density in a gas column under gravity. To see this explicitly, we con-
sider here a model belonging to a family of systems for which such a local
equilibrium approximation yields strictly zero effect, contrary to observa-
tion. They consist of two species of different masses m+ and m− , interacting
through a pair potential V(ri−rj) which does not depend on the particle
type (the masses of particles i and j). A short calculation shows that the
partition function Z of such a system is of the form:
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where F depends on r+, r− only through their sum r — r++r− , and d is
the dimension. Assume now that under heat flow we can divide space in
small cells dd(x) with densities r+(x) and r−(x), within which the system is
in equilibrium at temperature T(x). The total partition function will then
be a product expressions (1) for each cell. If we now maximize it with
respect to r+(x) and r−(x) (with fixed number of particles) we get:
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with a± space-independent Lagrange multipliers. Subtracting these equa-
tions we get r+/r−=constant, i.e., no Soret effect.

In this paper we study a very simple one-dimensional model which
belongs to the class described above, and has a most extreme form of Soret
effect: there is total phase separation even for arbitrarily small temperature
differences. The two pure phases are separated by an interface in which
species are mixed, its width is a function of the parameters. Although this
full separation is not realistic, it is interesting to exhibit a model which, for
large sizes, is driven far from equilibrium by an arbitrarily small difference
of temperature.

We also study in this model the closely related question of the laws for
heat transfer. In regions in which phases are pure this transfer has an
anomalous spatial and temperature dependence, just as found in oscillator
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chains. (8) Within the interface we show that the behavior becomes the usual
Fourier law, as recently found by Dhar (9) in a model similar to the present
one, but in which particles are forced to stay mixed.

2. THE MODEL

We shall consider a one dimensional system of length L consisting of
N point particles of two species: N+ heavy and N− light particles of masses
m+ and m− , respectively.

Particles interact through an infinitely narrow potential of height V, so
that when two particles meet they collide if their center of mass energy

Ec=
1
2

m1m2
m1+m2

(v1−v2)2 < V (3)

and ignore each other otherwise. The collision between particles conserves
energy and momentum:

v1 0 v −1=v1+
2m2

m1+m2
(v2−v1) (4)

v2 0 v −2=v2−
2m1

m1+m2
(v2−v1) (5)

These collision rules are reversible and satisfy detailed balance. Between
collisions the particles evolve freely across the system. Particles colliding
against the walls x=0 and x=L rebounce with a velocity with random
distribution corresponding to thermalisation at temperatures Tc and Th,
respectively:

Pa(v) dv=
m
oTa

v exp 1 − mv2

2oTa
2 dv a=c, h (6)

This guarantees that if Tc=Th the system equilibrates to the Maxwell dis-
tribution.

In fact, only the potential between particles of different species is rele-
vant, since particles of equal mass only exchange their velocities in a colli-
sion, which then just amounts to exchanging their labels—a one dimensio-
nal peculiarity. As a consequence of this, we can consider this model as
having a potential V(ri−rj) which is independent of particle type (and
hence belongs to the family (1)), and at the same time consider that par-
ticles of the same type are transparent to one another, and hence our model
is a particular case of the one introduced by Widom and Rowlinson. (10)
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3. PHASE SEPARATION

We use a simple molecular dynamics in the simulation, calculating the
minimum collision time and letting the system evolve freely between colli-
sions. We perform simulations for different number of densities, and dif-
ferent values of the length ranging from L=100 to L=2000, which allows
us to consider finite-size effects.

We have checked that in the equilibrium case (the temperature in both
sides of the system are identical) the two species are homogeneously dis-
tributed in space and their velocity distribution is Maxwellian. We also
have checked that for the case of one type of particles with two different
temperatures, the average energy is the one corresponding to an homoge-
neous temperature `TcTh . This is because if we consider only one type of
particles, in the elastic case the particles simply cross the system without
any interaction with other particles and it is easy to verify that the distri-
bution of velocities is just composed of two Maxwellian distributions at
different temperatures for particles flying in each direction.

In Fig. 1 we show the evolution of the particles after a long thermali-
sation time, starting from a configuration with random positions (L=100,
V/Tc=10, T=Th/Tc=10, m−/m+=0.2). We can see that the space is
divided in two regions with only a single species, separated by an interface
in which both species mix. Away from the interface, because all particles
have the same mass, the system can be considered as non-interacting.
Hence we have the following picture: the heavy particles collide with the
hot wall at x=L. They fly unperturbed (modulo relabelings) throughout
the the heavy-particle phase, until they meet the first light particles around
the interface. After one or more crossings and collisions with light particles,
they return to the heavy-particle phase, where they are free again. The
same can be said of the light particles on the left.

A simple computation helps clarify what happens in the interface.
Consider a system with a light and a heavy particle. Estimating their velo-
cities according to the temperatures of the walls, we have:

• If the light particle is on the left and the heavy one on the right:

Ov2−P %
Tc
m−

Ov2+P %
Th
m+

, (7)

which gives a typical center of mass energy:

2E (1)CM=
(Tc+Th)(m++m−)−(`Tcm−+`Thm+)2

(m++m−)
. (8)
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Fig. 1. Plot of the time evolution of the positions of the particles. The large circles corre-
spond to a particles with m+=1 while the small ones to a m−=0.2. The walls are a
Tc(x=0)=1 and Th(x=100)=10. The interaction potential is V=10. There are 20 particles
of each type.

• If the heavy particle is on the left and the light one on the right:

Ov2−P %
Th
m−

Ov2+P %
Tc
m+

, (9)

giving the typical precollision center of mass energy:

2E (2)CM=
(Tc+Th)(m++m−)−(`Thm−+`Tcm+)2

(m++m−)
(10)

In fact is easy to show that:

A=
2E (1)CM

2E (2)CM

< 1 if m+ > m− ; Tc < Th, (11)

Hence, we see that the probabilities of collision are not symmetric: while
this does not prove that phase separation exists, it gives us the sign of the
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effect. Note that there is a similarity with asymmetric exclusion proces-
ses, (11) although unlike that case here detailed balance holds in the bulk.

4. INTERFACE

In Fig. 2 we show the time-averaged particle densities r+(x) and
r−(x):

r± (x)=1/t lim
tQ.

F
t

0
dtŒ C

i ¥ ±
d(x−xi(tŒ)) (12)

for a system with the same parameters as Fig. 1. We see, as before, that the
two types of particles are completely separated, but the interface seems
much thicker than in Fig. 1. The reason for this discrepancy is simple: the
position of the interface fluctuates with time. Upon time-averaging we are
actually measuring the instantaneous interface width convoluted with the
dispersion in its position.

Fig. 2. Plot of the densities r+ and r− . The parameters of the model are the same as in
Fig. 1. Data obtained with 100 bins taking measures every 10 collisions during a time corre-
sponding to 500.000 collisions per particle. The diamonds correspond to the heavy particles
while the circles correspond to the light ones.
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Fig. 3. Plot of the product r+(x) r−(x). For different sizes L, centering and rescaling the
interface with `L . The curves correspond to L=100, 200, 400, 800.

The fluctuations in the position of the interface DL scale with the
system size L. In Fig. 3 we check the assumption that, just like in an ordi-
nary equilibrium system DL 3`L. In order to do this, we plot the product
of densities r+(x) r−(x), a quantity that is large only in the interface, for
several system sizes and we verify that, indeed, the function scales with
`L. In Fig. 3 we have considered again the same parameters as in Figs. 1
and 2, and systems lengths from L=100 to L=800. Rescaling the
averaged interface with`L, the curves collapse.

In Fig. 4 we plot r+r− for a system of length 100 and V=10. On the
left figure we vary the temperature of the hot wall keeping the mass ratio
constant, while on the right figure we have changed the mass ratio while
keeping the temperatures constant. These plots show us the shift in terms
of the parameters of the average location of the wall.

As we seen earlier, the time-averaged width of the interface is
dominated by the time fluctuations of the wall position, rather than by its
instantaneous width. Hence, it is convenient to define a parameter that
reflects the mixing of the particles at every time, thus giving a measure of
the instantaneous width of the interface. For each heavy particle we count
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Fig. 4. Product r+(x) r−(x) for different values of the parameters. Left: Th/Tc=4, 5, 8, 10,
15 and m−/m+=0.2. Right: m−/m+=0.05, 0.1, 0.15, 0.2, 0.25 and Th/Tc=10.

the number qi (=0, 1, 2) of its nearest neighbors that are light particles.
Our parameter is then:

q —
;N
i qi−1

2
(13)

For a sharp interface q=0, and for a very mixed system q is of order N. In
Fig. 5 we show the frequency distribution of q averaged over many time-
steps for various sizes of the system. We see that the averaged distribution
of q (which reflects the instantaneous width of the interface) is independent
of the system size, as expected. We can hence study how the width changes
with the various parameters, in a system-size independent way.

On (a) in Fig. 6 we can see how the sharpness of the interface increases
as we decrease the mass ratio. The same effect occurs when we increase
the interaction potential (b) or the temperature ratio (c). The physical
interpretation of these tendencies is easy to understand. The system is
completely mixed when the two thermal walls are at the same temperature.
In fact, in this case the asymmetry (11) in the probability of collisions
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Fig. 5. Check of the size independence of the averaged frequency of q. The parameters are
V/Tc=5, Th/Tc=10, m−/m+=0.2.

Fig. 6. Dependence of the distribution of q on the parameters. (a) Th/Tc=10, m−/m+
=0.2 and V/Tc=4, 5, 6, 7; (b) Th/Tc=10, V/Tc=5 and m−/m+=0.05, 0.1, 0.2, 0.3
(c) m−/m+=0.2, V/Tc=5 and Th/Tc=5, 10, 15, 20.
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disappears (A=1), and equilibrium is reached. Obviously if the masses are
equal or the interaction potential is zero, the system is also completely
mixed because there are no collisions.

We have found no evidence of a threshold in the values below which
there is no separation for an infinite system. Indeed, the limit of ‘‘mixed
particles’’ (e.g., at equal temperatures or equal masses) is only achieved
when the interface length becomes larger than system size.

5. BOLTZMANN EQUATION

Let us now write down a Boltzmann equation for the probability dis-
tribution function of the velocities of the particles, and check that it
reproduces correctly the phase-separation effect.

We have to deal with two coupled equations:

“f(x, v, t)
“t

=−v
“f
“x

+F |v−u| G(V−Ec(u, v))

×(f(x, vŒ, t) g(x, uŒ, t)−f(x, v, t) g(x, u, t)) du (14)

“g(x, v, t)
“t

=−v
“g
“x

+F |v−u| G(V−Ec(u, v))

×(f(x, uŒ, t) g(x, vŒ, t)−f(x, u, t) g(x, v, t)) du (15)

where f(x, v, t) and g(x, v, t) are the probability distributions for the two
types of particles, and G(x)=1 if x > 0, and zero otherwise. As usual,
uŒ and vŒ are velocities the particles should have before the collision in
order that the velocities after collision are u and v respectively. These
equations must be solved with the adequate boundary conditions (6).

The approximation that is made in Eqs. (14) and (15) is that the cor-
relations between particles are neglected: each particle collision is indepen-
dent of the collisions the particle has suffered before. More formally, this
means that:

f2(x, xŒ, v, vŒ, t)=f(x, v, t) f(xŒ, vŒ, t) (16)

g2(x, xŒ, v, vŒ, t)=g(x, v, t) g(xŒ, vŒ, t) (17)

Unfortunately, as far as we know, the system (14) and (15) cannot be
solved analytically. We solve it numerically using a stochastic process based
on the Bird algorithm (12) which has been proved (13) to converge to the solu-
tion of the Boltzmann equation. (14) We have used this algorithm for this
system taking into account the point potential.
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Fig. 7. Left: Densities profiles (left) and r+(x) r−(x) (right) for a system of length 100 with
200 particles of each type and V/Tc=4, m−/m+=0.2 and Th/Tc=10. The squares represent
molecular dynamics while the circles the results of the Boltzmann equation.

In Fig. 7 we show the profile of the spatial density of the two types
of particles for a system consisting of 200 particles of each type for a poten-
tial V/Tc=4, mass ratio m+/m−=0.2 and temperature ratio Th/Tc=10,
evolving with the original model. To this we superpose the numerical solu-
tion of the Boltzmann equation for the corresponding densities: we can see
that the two normalized profiles are almost identical, thus confirming the
accuracy of the Boltzmann approximation. We have checked that this good
agreement holds for any value of the parameters.

The fact that the Boltzmann equation is a good approximation, at
least away from the interface, is easy to understand. As the two species are
separated, the most likely situation after a collision is that at least one of
the two colliding particles goes freely to its corresponding wall, it loses all
memory of the correlation with other particles. Thus, the neglect of the
correlations implicit in the Boltzmann equation is a good approximation.

A special note should be made about the interface fluctuations. The
Boltzmann equation has a unique solution for every finite length L (it is
first order). However, if we were to compute the stability matrix around the
solution, we would find that the mode corresponding to translation of the
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wall becomes softer as L Q.. This in turn means that corrections to the
Boltzmann approximation become more and more important in that limit,
and they yield the wall’s fluctuations. (This question becomes more familiar
if we bear in mind the analogy with a 2D Ising ferromagnet with the spins
on right boundary set to +1 and on the left to −1. The Boltzmann equa-
tion is analogous to a mean-field solution, which places the interface in the
middle, and neglects the fluctuating displacements of the domain wall.)

6. HEAT TRANSPORT—RECOVERY OF LINEAR ENERGY PROFILE

AND TEMPERATURE DIFFERENCE DEPENDENCE OF THE

CURRENT

In one dimensional systems, the obtention of Fourier’s law is still an
open question. (15, 17) We shall not study here the size-dependence of the
conductivity, but content ourselves with checking the recovery of a uniform
energy gradient in the limit of ‘‘broad interface.’’

As mentioned above, this one dimensional model has the peculiarity
that particles can be considered non-interacting everywhere except in the
interface, where both species mix. This reflects itself in an extremely
pathological form of heat transfer: the only spatial gradient in kinetic
energy of the particles occurs across the interface, since far from the inter-
face we have a gas of noninteracting particles. It thus seems reasonable, if
we wish to recover the usual laws for heat transfer, to place ourself in
conditions such that the interface is broader than the sample itself and
species are mixed.

In order to study the temperature profile in the interface we have
chosen very small temperature differences and species with very similar
masses. In Fig. 8 we show the energy profile for a system of length L=100
with 100 particles of each type, with masses m+=1 and m−=0.95, respec-
tively. We plot the energy profile for m+ for different values of the tem-
perature ratio, Th/Tc=1.05, 1.10, 1.15, 1.20. We can clearly see that the
energy distribution changes linearly along the system, and that it is pro-
portional to the thermal gradient. In fact, the straight lines fitted have all
the same slope, indicating that the conductivity in the interface is the same
for all cases.

Even in this small gradient case we can see that the mass distribution
is not uniform. In fact, the massive particles are located closer to the
hottest wall while the lightest ones are closer to the coldest wall, the con-
centration gradients being uniform. This fact can be seen in Fig. 9, where
we have plotted the normalized particle densities for the same case as in
Fig. 8 for Th/Tc=1.30. The error bars for the local energy or density cor-
respond to the estimated variance obtained by computing the r.m.s.d over
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Fig. 8. Plot of the energy profile in function of the temperature ratio along the system for
the particles with mass m+=1 when the other particles have a mass of m−=0.95. The length
of the system is L=100. The temperature ratios plotted are, from top to bottom, Th/Tc=1.20,
1.15, 1.10, 1.05. All the fitted lines have the same slope.

several dynamical histories (15 histories were enough to obtain a rough
estimate of the errors).

The results above for the broad-interface case are not surprising, in
view of the results of Dhar (9) mentioned in the introduction. Note,
however, that unlike the present situation, in ref. 9 particles with different
masses are never allowed to cross, so the Soret effect is avoided completely.

It can also be seen that for a fixed small thermal gradient, the tem-
perature profile depends linearly on the difference of masses. This fact
suggests the possibility of expanding the Boltzmann equation in powers of
this parameter and making an estimation of the conductivity for the case in
which the masses of the two species are very similar. (16)

7. CONCLUSIONS

In this paper we have numerically solved a model with two types of
particles with different masses. We have shown that a thermal gradient is
enough to separate completely the two species, at least if the system is large
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Fig. 9. Plot of the mass profile along the system for the particles with mass m+=1 when the
other particles have a mass of m−=0.95. The length of the system is L=100. The tempera-
ture ratio considered is Th/Tc=1.30. The curve with positive slope correspond to m+=1.

enough to accommodate the interface. The phase separation is due to the
collision asymmetry (11) provoked by the thermal gradient applied. For
large enough systems, the heavy particles are closer to the hottest wall
while the light particles are closer to the coldest one. Between these two
regions there is an interface where the two types of particles live together.
In the regions occupied by only one type of particles the kinetic energy
gradient is zero because the system is a noninteracting gas, so that all the
energy density drop is localized in the interface (a finite region of the
space). We have also studied the behavior of the interface for different
values of the characteristic parameters of the system, showing that its
instantaneous width is independent of the system size. By means of a
numerical solution of the Boltzmann equation for this systems, we have
checked that the total phase separation is also obtained within this approx-
imation [Eqs. (14) and (15)]. We have also investigated the limit of ‘‘broad
interface,’’ in which the interface is broader than the system itself, and
shown that a linear dependence of the heat current on the temperature dif-
ference, and a constant gradient of the energy density are recovered in that
case.
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